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WIMP dark matter

What do(nt) we know in terms of non-gravitational interactions?
e Assuming a thermal relic [following BBN]
> (OamV) 0.~ 1pbn

e Upper bounds on other interaction rates
<0scatV> dec <Gannv> gal <Oscatv> N

Phase Indirect Direct
space detection detection

e Strongest usually on nuclear elastic scattering
=> <Uelas’U>nuc < 1 pbn (if in sensitivity range)

= ifcoherent oy < 1077 pbn
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Observational “Hints”
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Implications?

If any of these effects were to be due to dark matter,
we need (some combination of):

e Large galactic annihilation cross-section
* A significant branching to leptons
* More complex nuclear scattering

l.e. a non-standard WIMP candidate
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Implications?

If any of these effects were to be due to dark matter,
we need (some combination of):

e Large galactic annihilation cross-section
* A significant branching to leptons
* More complex nuclear scattering

l.e. a non-standard WIMP candidate

-> sufficient motivation (for this talk!) to explore dark matter

as part of a larger (multi-component, interacting) dark sector
[cf. Arkani-Hamed et al 08, ...]

Q: Does this more general framework point to
new observational probes?



New physics in a hidden sector

Empirical evidence for new physics does not always point to the EW scale
and above, but rather to a hidden sector

Standard Model <—>

Hidden sector may contain
“light” states, if neutral
under SM gauge group

energy [ “hidden valleys” in collider phen,

EWSB Strassler & Zurek]
reach
T Motivates the luminosity
frontier as a place to

. search for new physics
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New physics in a hidden sector

Empirical evidence for new physics does not always point to the EW scale
and above, but rather to a hidden sector

Dark matter
Standard Model <—> RH neutrinos

Hidden sector may contain
“light” states, if neutral
under SM gauge group

Allowing dark matter to annihilate into the hidden sector is a
simple means of decoupling Gann and Oscat

e the products of annihilation can mediate very weak interactions
with the SM, as they may be long-lived (1~1s)

e when light, this also allows for possible enhancement/suppression,
relevant for existing (astrophys) anomalies: DAMA, PAMELA, etc.
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Probing a hidden (dark) sector

Standard Model <—> Hidden Sector

n=k+I1—4 O/ESM) Ol(med>

Lmed — nzl A7

Generic interactions are irrelevant (dimension > 4), but there are
three renormalizable “portals”

K
2
e Higgs portal: £ = (—}\SZ+ES)HTH

e \Vector portal: L =—=V*'B,,

e Neutrino portal: £, = —y,;.L,HN
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Probing a hidden (dark) sector

Standard Model <—> Hidden Sector

n=k+I1—4 O/ESM) Ol(med>

Lmed — nzl A7

Generic interactions are irrelevant (dimension > 4), but there are
three renormalizable “portals”

K
2
e Higgs portal: £ = (—}\Sz+§S)HTH

e Vector portal: L =—=-V*B,,

e Neutrino portal: £, = —y,;.L,HN

NB: The vector mediator V can naturally be light (M << M,)

implying a new (dark) force
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A secluded U(1)

Its straightforward to write down a simple realization of the
vector portal

;— 1, ¥

R

e Weak-scale states charged under U(1)s are WIMP dark matter

candidates [Pospelov, AR, Voloshin '07; Hooper & Zurek ‘08; Arkani-Hamed et al ‘08;
Pospelov, AR ‘08; Batell, Pospelov, AR ’09]

/ ~ 10—2 ( mX )
= ¢ “\270GeV

V™ 4+ Dyl —V(0)  [Holdom g6

e If kinetic mixing arises from integrating out heavy charged states
at 1-loop = « ~ 103, SUSY D-terms then imply m,, ~ O(GeV)
[Arkani-Hamed & Weiner ‘08, Baumgart et al ‘09; Cheung et al ‘09; Katz & Sundrum ‘09]

e We will take the secluded U(1) coupling a’=a, so the parameter
space = {m,,,m,;,x}
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Multi-component WIMP states

e Enhanced annihilation (e.g. Sommerfeld enhancement)
generally requires multi-component (e.g. Dirac) WIMP states.

e However, direct detection limits point to singlets, without
any (axial-)vector couplnigs, so consider a generic case...

1 2)(2

X | — ‘Xl}Am

Lint = €'V,(x10ux2 — X20,X1)

This substructure (or a form-factor) also leads to more complex nuclear
scattering (cf. DAMA etc).
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DM Annihilation

e Relativistic annihilation at freeze-out

¥ Kinetic mixing with y,Z =

e \V decays (mainly) to 2 leptons if my < 600 MeV
* VV decays (mainly) hadronically if heavier

e Decays to photons are soft, since no 2y decay

=]
<

* Non-relativistic annihilation in the galaxy

14



Given parameters which enhance annihilation in the galaxy,
what are the implications for direct detection?

 Implications for nuclear scattering
= endothermic and exothermic scattering

* Probing dark forces directly
» fixed targets, neutrino beams & B-factories
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1. Direct detection
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Nuclear scattering

X1 X2 X1 X2 X1
- - > - >
V V
B )
N N
(a) elastic scattering : xa,2)N — x@a2)NV.
(b) endothermic scattering (Q = —Am) : X1N — xalV.
(¢) exothermic scattering (Q = Am) : xaN — x1N.

[as in “inelastic dark matter’ Tucker-Smith & Weiner ‘01]

[also: Han & Hempfling ‘97; Hall, Moroi, Murayama ‘97]
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Endothermic inelastic scattering
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2nd-order Elastic scattering

1077 — ——
] Am = 10MeV :
10~
K
10~ - T~ my = 100 MeV
my = 10 MeV
10—5 | | o | o
10 20 50 100 200 500 1000
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2nd-order Elastic scattering

m, =200 GeV
1 — —— l T
§ Am = 10 MeV
107" ¢ nucleon scattering -
107
K E
107 R -
~ Coherent nuclear scattering
10—5 . . N | . . L
10 20 50 100 200 500 1000
my (MeV)
20
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Relic x, & exothermic scattering

® After decoupling and freeze-out of interconversion:

ng ~10_2><( My )5/2 10 MeV \ '/
i 300 GeV To

[further upscattering in the galaxy, but generally subdominant,
as in XDM Finkbeiner, Weiner '07; Pospelov, AR ‘07]

e Decays are highly suppressed (for Am < 2m,):

1 1
FX2_>X1+3'7 >> T FX2—>X11/17 >> -
TU TU

=> Exothermic down-scattering is a possible
direct detection signature!

[see also Finkbeiner, Slatyer, Weiner and Yavin ‘09]
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Exothermic scattering

m, =100 GeV, vg=500 km/s

my =1GeV
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Summary (part 1)

A multi-component dark matter sector, with near-degeneracies,
can significantly modify the signatures for direct detection:

= endothermic and exothermic nuclear scattering is possible

= exothermic scattering of metastable states leads to a
rather generic constraint on multi-component WIMP sectors

= significant element-dependence (generic for inelastic DM)
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2. Direct probes of dark forces
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Probing a secluded U(1) directly

We can also consider experimental probes of the vector
portal directly, independent of dark matter

L=_ty2_ X

Voo = Vi + D" =V (9)

J

2
Ling = —KeV, I + VRV, V*
Vv

PN

V - production through mixing h’ - production through
with EM current: O(k?) higgs’strahlung: O(k?)
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Vector decays
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Parametrically:

my (GeV)

Ly(V —20) ~ O(x?)
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Higgs' decays
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When the higgs'’ is light (m,, < m,)), it is parametrically long-lived:

Tw(h — 21) ~ O(x*) For k < 102, this can be > 108 m
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Experimental Sensitivity

Luminosity matters!

* Fixed targets (proton & electron beams dumps)

- up to 1023 POT for modern neutrino sources
- sensitive to long-lived states

* Medium energy colliders (BaBar, Belle, KLOE,...)

- large datasets ~ O(1500) fb-1
-\s ~ 10 GeV

* Rare decays

- high statistics e.g. for kaon decays
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Experimental Sensitivity

In pictorial form

0.01 0.1
— 1 10 . m, (m,) [GeV]
10-2 [Pospelov ‘08]
104
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Experimental Sensitivity

In pictorial form

0.01 0.1 1 10 m, (m,) [GeV]

[Pospelov ‘08]

SLAC beam dump E-137

/ [Bjorken et al. ’88]

[Bjorken et al. ‘09]

10
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Fixed target probes - Neutrino Beams

, [ (near)
detector

09/10/09 31



Neutrino Beams
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Sensitivity to Vectors

09/10/09

LSND: Distance to detector = 30m, 1023 protons on target!
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Sensitivity to Higgs’

From LSND, MiniBooNE, NuMI/MINQOS, ...

10 e
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Experimental Sensitivity

In pictorial form

0.01 0.1 1 10 m, (m,) [GeV]

[Pospelov ‘08]

106
[Bjorken et al. ‘09]
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Experimental Sensitivity

In pictorial form

2 > 1 10, m, (m,) [GeV]

v

[Batell, Pospelov, AR ‘09]

High luminosity proton sources,
used to produce collimated
neutrino beams, can also be used
K to probe the secluded U(1) sector
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Collider probes - B-factories

Simplest (and perhaps most generic) process is e*e—Vy

with V—leptons [Borodatchenkova et al. ‘05]
[see also: Essig et al. ‘09;
Reece & Wang ‘09]

(+ . A

= r~

However, there is always a background process with y, which
means hunting for a bump in dilepton mass

[analyses from BaBar, and future work from Belle, BES-III]

NB: primarily continuum V-production, Y(nS)’s give a small correction
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my, (GeV)

Collider probes - B-factories

Higgs'strahlung: ete™ — VA — 61 (or 21 +F)
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[see also: Essig et al. ‘09; Reece & Wang ‘09]
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Experimental Sensitivity

In pictorial form
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Experimental Sensitivity

In pictorial form

0.01 0.1 1 10

mv (mh) [GeV]

[Borodatchenkova et
al. ‘09]

[Batell, Pospelov, AR ‘09;
Essig, Toro, Schuster ‘09;
Reece, Wang ‘09]

B-factories can use higgs’strahlung
(with multi-lepton final states) to

probe a higher mass range for the
K secluded U(1) sector
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Other direct signatures

Subject of recent activity
www-conf.slac.stanford.edu/darkforces2009

e A more complex nonabelian hidden sector allows for
other signatures at ee-colliders [Essig et al. '09]

[Very recent null search at BaBar for e*te = WpW’p — 4]
e Can also explore rare meson decays (BaBar/Belle,
KLOE, KTeV, ...)
~ —7
Brg, o+~ = 3.6 X 10

e Interesting signatures (lepton jets) at high energy
hadron colliders (SUSY missing energy “comes back”

as a lepton jet!) [Arkani-Hamed & Weiner 08, Baumgart et al. '09]

* Proposals for new analyses at B, D, K factories, and

new fixed target experiments below hadron threshold i


http://www.slac.edu/darkforces
http://www.slac.edu/darkforces

Summary (part 2)

® A neutral hidden sector is an intriguing possibility, motivated by dark
matter, RH neutrinos, SUSY breaking, ...

® |ight degrees of freedom may interact with the SM at the
renormalizable level via the vector, Higgs, and neutrino portals

® Sensitivity to these portals lies at the luminosity frontier, e.g. medium
energy e*e-machines (B-factories), rare decays, fixed targets, ...

® Significant sensitivity to a secluded U(1) from neutrino sources: LSND,
MiniBooNE, NuMI/MINOS, T2K, NOvA, MicroBooNE, Project X, ....
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matter, RH neutrinos, SUSY breaking, ...

® |ight degrees of freedom may interact with the SM at the
renormalizable level via the vector, Higgs, and neutrino portals
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SN LT

@ Fermilab!
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